
The search for new or alternative materials, whether

through experiment or simulation, has been a slow

and arduous task, punctuated by infrequent and often

unexpected discoveries1-6. Each of these findings

prompts a flurry of studies to better understand the

underlying science governing the behavior of these

materials. While informatics is well established in

fields such as biology, drug discovery, astronomy, and

quantitative social sciences, materials informatics is

still in its infancy7-13. The few systematic efforts that

have been made to analyze trends in data as a basis

for predictions have, in large part, been inconclusive,

not least because of the lack of large amounts of

organized data and, even more importantly, the

challenge of sifting through them in a timely and

efficient manner14. 

When combined with a huge combinatorial space of

chemistries as defined by even a small portion of the periodic

table, it is clearly seen that searching for new materials with

tailored properties is a prohibitive task. Hence, the search for

new materials for new applications is limited to educated

guesses. Data that does exist is often limited to small regions

of compositional space. Experimental data is dispersed in the

literature, and computationally derived data is limited to a

few systems for which reliable data exists for calculation.

Even after recent advances in high-speed computing, there

are limits to how the structure and properties of many new

materials can be calculated. Hence, this poses both a

challenge and opportunity. The challenge is to deal with

extremely large, disparate databases and large-scale
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Seeking structure-property relationships is an

accepted paradigm in materials science, yet these

relationships are often not linear, and the challenge is

to seek patterns among multiple lengthscales and

timescales. There is rarely a single multiscale theory

or experiment that can meaningfully and accurately

capture such information. In this article, we outline a

process termed ‘materials informatics’ that allows

one to survey complex, multiscale information in a

high-throughput, statistically robust, and yet

physically meaningful manner. The application of

such an approach is shown to have significant impact

in materials design and discovery. 
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computation. It is here that knowledge discovery in databases

or data mining – an interdisciplinary field merging ideas from

statistics, machine learning, databases, and parallel and

distributed computing – provides a unique tool to integrate

scientific information and theory for materials discovery 

(Fig. 1). The goal of data mining is the extraction of

knowledge and insight from massive databases. It takes the

form of discovering new patterns or building models from a

given dataset. The opportunity is to take advantage of recent

advances in data mining and apply them to state-of-the-art

computational and experimental approaches for materials

discovery. 

Materials science data: feast or famine?
One may naturally assume that large amounts of data are

critical for any serious informatics studies. However, what

constitutes ‘enough’ data in materials science applications

can vary significantly. In studying structural ceramics, for

instance, fracture toughness measurements are difficult to

make and, in some of the more complex materials, just a few

careful measurements can be of great value. Similarly,

reliable measurements of fundamental constants or

properties for a given material involve very detailed

measurement and/or computational techniques15-19. In

essence, datasets in materials science fall into two broad

categories: datasets on a given materials behavior, related to

mechanical or physical properties, and datasets related to

intrinsic information based on the chemical characteristic of

the material, e.g. thermodynamic datasets. 

In the materials science community, crystallographic and

thermochemical databases have historically been two of the

best-established. The former serves as the foundation for

interpreting crystal structure data of metals, alloys, and

inorganic materials. The latter involves the compilation of

fundamental thermochemical information in terms of heat

capacity and calorimetric data. While crystallographic

databases are used primarily as a reference source,

thermodynamic databases represent one of the earliest

examples of informatics, as these databases were integrated

into thermochemical computations to map phase stability in

Fig. 1 The role of materials informatics is pervasive across all aspects of materials science and engineering. Mathematical tools based on data mining provide the computational engine for

integrating materials science information across lengthscales. Informatics provides an accelerated means of fusing data and recognizing in a rapid yet robust manner structure-property

relationships between disparate lengthscales and timescales. A complete materials informatics program will have an information technology (IT)-based component that is linked to

classical materials science research strategies. The former includes a number of features that help informatics to be a critical tool in materials research: data warehousing and data

management, which involves a science-based selection and organization of data that is linked to a reliable data searching and management system; data mining, providing accelerated

analysis of large multivariate correlations; scientific visualization, a key area of scientific research that allows high-dimensional information to be assessed; and cyber infrastructure, an IT

infrastructure that can accelerate sharing of information, data, and, most importantly, knowledge discovery. 
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binary and ternary alloys20-26. This led to the development of

computationally derived phase diagrams – a classic example

of integrating information in databases with data models. The

evolution of both databases has occurred independently

although, in terms of their scientific value, they are

extraordinarily intertwined. Phase diagrams map out regimes

of crystal structure in temperature-composition space or

temperature-pressure space. Yet, crystal structure databases

have been developed totally independently. At present, the

community must work with each database separately, and

information searches are cumbersome. Interpretation of 

data involving both is very difficult. Researchers only

integrate such information on their own for one very specific

system at a time, based on their individual interests. Hence

there is currently no unified way to explore patterns of

behavior across databases that are closely related

scientifically. 

One of the more systematic efforts to address this

challenge has been that of Ashby and coworkers27-33. They

showed that, by merging phenomenological relationships in

materials properties with discrete data on specific materials

characteristics, one can begin to develop patterns of

classification of materials behavior. The visualization of

multivariate data was managed using normalization schemes,

which permit the development of ‘maps’ that provide a way

to capture new means of clustering of materials properties. It

also provides a methodology for establishing common

structure-property relationships across seemingly different

classes of materials. While very valuable, this approach is

limited in its predictive value and is ultimately based on using

prior models to build and seek relationships. In the

informatics strategy of studying materials behavior, we

approach it from a broader perspective. By exploring all types

of data that may have varying degrees of influence on a
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Fig. 2 The ultimate goal of ‘knowledge discovery’ is achieved through systematic integration of data, correlation analysis developed through data-mining tools and, most importantly,

validation by fundamental theories and experiment-based science. The sources of data can be varied and numerous, ranging from computer simulations and high-throughput

experimentation through combinatorial experiments and large-scale databases of legacy information. The application of advanced data-mining tools allows processing of very large sets of

information in a robust yet rapid manner. The collective integration of statistical learning tools (a few of which are illustrated above) with experimental and computational materials

science permits an informatics driven strategy for materials design. 
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given property or properties with no prior assumptions, one

uses data-mining techniques to establish both classification

and predictive assessments in materials behavior. However,

this is not done from a purely statistical perspective but a

perspective where one carefully integrates a physics-driven

approach to data collection with data mining, then validates

or analyzes it with theory-based computation and/or

experiments. Data can come from either experiment or

computation. The former, when organized in terms of

combinatorial experiments, can screen large amounts of data

in a high-throughput fashion34-38. However, the materials

informatics pathway to knowledge discovery is not a linear

process but an iterative one that can, at each ‘information

cycle’, provide new information (Fig. 2). 

Data mining: learning from the past
and predicting the future 
Broadly speaking, data-mining techniques have two primary

functions: pattern recognition and prediction, both of which

form the foundations for understanding materials behavior.

Following the treatment of Tan et al.39, the former, which is

more descriptive in scope, serves as a basis for deriving

correlations, trends, clusters, trajectories, and anomalies

among disparate data. The interpretation of these patterns is

tied intrinsically to an understanding of materials physics and

chemistry. In many ways, this role of data mining is similar to

the phenomenological structure-property paradigms that play

a central role in the study of engineering materials, except

now we are able to recognize these relationships with far

greater speed and not necessarily depend on a priori models,

provided, of course, that we have the relevant data. The

predictive aspect of data mining tasks can serve for both

classification and regression operations. Data mining, which is

an interdisciplinary blend of statistics, machine learning,

artificial intelligence, and pattern recognition, is viewed as

having a few core tasks: 

• Cluster analysis seeks to find groups of closely related

observations and is valuable in targeting groups of data

that may have well-behaved correlations and can form the

basis of physics-based as well statistically-based models.

Cluster analysis, when integrated with high-throughput

experimentation, can serve as a powerful tool for rapidly

screening combinatorial libraries. 

• Predictive modeling helps to build models for targeted

objectives (e.g. a specific materials property) as a function

of input or exploratory variables. The success of these

models also helps refine the usefulness and relevance of

the input parameters. 

• Association analysis is used to discover patterns that

describe strongly associated features in data (for instance,

the frequency of association of a specific materials

property to materials chemistry). Such an analysis over

extremely large datasets has been made possible by the

development of very high-speed search algorithms, and

can help to develop heuristic rules for materials behavior

governed by many factors40. 

• Anomaly detection does the opposite by identifying 

data or observations that are significantly different from

the norm. The ability to identify such anomalies or 

outliers is critical in materials, since it can identify new

classes of materials with unusual properties (e.g.

superconducting ceramics as opposed to insulating

ceramics) or anticipate potential harmful effects, which

are often identified through a retrospective analysis 

after an engineering failure (e.g. the ductile-brittle

transition).

In most materials science studies, we identify a priori

likely variables or parameters that affect a set of properties.

This is usually based on theoretical considerations and/or

heuristic analysis based on prior experience. However, it is

difficult to integrate information simultaneously from

multivariate data, especially when phenomenological

relationships cannot always be explained in advance. 

A statistical evaluation to search for each descriptor is

computationally expensive and most probably ineffective.

One basic approach to addressing this problem is to use

principal component analysis (PCA). This is a technique for

reducing the information dimensionality that is often needed

from the vast arrays of data obtained from combinatorial

experiments, large databases, or simulations, in a fashion

such that there is minimal loss of information (see text box).

PCA (also referred to as singular value decomposition) is one

of a family of related techniques, including factor analysis

and principal coordinate analysis, that provide a projection of

complex datasets onto a reduced, easily visualized space. A

simple way of imagining this concept is to visualize a three-

dimensional cloud of data points that map correlations

between datasets based on a multiple set of potential

variables or influencing parameters41-43. Descriptors can, for

example, be physicochemical properties like melting point,
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processing variables like sintering temperature, or

microstructural descriptors like coordination number. The

enormous number of descriptors makes screening through

scatter maps a prerequisite. From the screened descriptor

space, we can select a region for the solution of our problem.

We can also simplify this selection by compressing the

dimensionality of the descriptor space by linear combinations

of the original descriptors. PCA provides a method for

transforming multiple descriptors into a much smaller set of

descriptors without losing much information44-52. This makes

visualization easier, as well as simplifying prediction and

classification (Fig. 3). 

While PCA is helpful in assessing the relative impact of

multiple parameters on properties, it is not a predictive tool.

For that, we need to apply other methods. We wish to

demonstrate the value of one such approach here using a

technique known as partial least squares (PLS). PLS regression

is probably the least restrictive of the various multivariate

extensions of the multiple linear regression models. This

flexibility allows it to be used in situations where the use of

traditional multivariate methods is severely limited, such as

when there are fewer observations than predictor variables.

Furthermore, PLS regression can be used as an exploratory

analysis tool to select suitable predictor variables and to

identify outliers before classical linear regression53-55. 

Of course, PCA and PLS are just two examples of data-

mining methods. There are many others, each suited to

different types of datasets in terms of size, skewness,

REVIEW FEATURE
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Fig. 3 Principal component plot of correlation data from a superconductor database. This

analysis involved hundreds of compounds and the incorporation of dozens of descriptors

from each compound. In only one projection (PC3 versus PC2) is a clear clustering pattern

seen. Linear clusters were found to be associated with systematic valency changes among

the compounds studied. This figure also emphasizes the importance of the visualization of

data in aiding interpretation of complex datasets.

Principal component
analysis

Principal component analysis (PCA) relies on the fact

that most descriptors are interrelated and that these

correlations, in some cases, are high. From a set of N

correlated descriptors, we can derive a set of N

uncorrelated descriptors (the principal components, or

PCs). Each PC is a suitable linear combination of all the

original descriptors. The first PC accounts for the

maximum variance (eigenvalue) in the original dataset.

The second PC is orthogonal (uncorrelated) to the first

and accounts for most of the remaining variance. Thus,

the mth PC is orthogonal to all the others and has the

mth largest variance in the set of PCs. Once the N PCs

have been calculated using eigenvalue/eigenvector

matrix operations, only PCs with variances above a

critical level are retained. The M-dimensional PC space

has retained most of the information from the initial 

N-dimensional descriptor space by projecting it onto

orthogonal axes of high variance. The complex tasks of

prediction or classification are made easier in this

compressed space. 

M compounds, N descriptors

N-dimensional
dataspace

Descriptor n

PC3

PC2

PC1

Descriptor 1

Descriptor 2
x2

x1

xi

Binning/clustering:
Each data point represents a
correlation position of the compound,
as influenced by all descriptors

Data matrix:
latent variables/response metrics

Principal component analysis:
Goal is to find a projection that
captures the largest amount of
variation in data

Dimensionality reduction
Principal component (eigenvector) space:
Each PC is described as a linear
combination of the weighted
contribution of each variable

Seek patterns of clustering in PCA
space which may involve other
statistical and data-mining
techniques: integrate into materials
science interpretation for knowledge
discovery

(Adapted from41. © 2002 Nature Publishing Group.) 
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uncertainty within datasets, distribution, and other such

features of the data and the type of information that one is

ultimately seeking. For example, techniques such as the

support vector machine (SVM), which falls under the category

of ‘supervised learning’ methods, is of great value if one has

some previous information about the materials under study.

These can be combined into a set of training examples used

by the SVM to distinguish between members and

nonmembers of the class, on the basis of their behavior. For

instance, we have used such an approach to develop

classification schemes for grouping inorganic high-

temperature superconductors56. 

Applications: what can we learn
through informatics? 
In the following discussion, we provide two brief examples of

how data mining can be used to address material science

issues.

• Searching through data – what information is really

important?

Chemical tailoring of sintering aids for ceramic processing 

Using the approach described above, we have estimated

the effect of a vast array of influences in identifying

correlations and key chemistries that control the fracture

toughness of silicon nitride ceramics. Using a database

that we built that includes over 2000 entries and explores

over 20 different sets of latent variables, we have

established data-mining procedures to explore correlations

between a wide array of parameters across length scales

relative to fracture toughness. Based on this, we explored

heuristically the impact of a comprehensive history of the

role of additives on mechanical properties. We have shown,

for instance, that specific rare-earth additives play an

important role, and that many others do not. From this, we

have been able to assess rapidly the key chemistries that

are needed to develop a processing strategy for enhancing

the mechanical properties of silicon nitride ceramics 

(Fig. 4). 

• Data mining as a predictive tool 

Establishing ‘virtual’ materials libraries and structure-

property relationships through data mining

We used predictive models based on first principles

calculations to elaborate on unknown entries in a pre-

existing library of materials. We then used these

descriptors to develop a larger, heuristically-derived

database by using a combination of PCA and PLS

techniques based on a training set of theoretically derived

data. This aided the exploration of a broader range of new

Fig. 4 (a) Correlation map based on thousands of data points plotting correlations from scatter plots of numerous processing and chemistry variables associated with fracture toughness

data in SiN. The database was established through a long term survey of literature data. The plots by themselves show little of any trends in structure-chemistry-process-property

relationships. (b) Principal component plot of the same data in (a) reveals a striking linear cluster of data for just a few chemistries, indicating that these are the main parameters

influencing fracture toughness. The linear plot represents a strong linear clustering of data associated with the specific chemistries that contribute to the targeted property (fracture

toughness) of this data-mining analysis. This effectively serves as a data screening tool for identifying important chemistries among a much larger multidimensional dataset. 
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trends and correlations (in studying chemistry-

bandgap/modulus relationships) that have not been

established before (Fig. 5), thus creating a ‘virtual’ library.

This virtual library forms a unique database for exploring

relationships and trends, from which one can use ab initio

calculations and, eventually, actual testing to verify these

trends and relationships. It is important to recognize that

this library can, in principle, be built up by repeating

complex atomistic calculations for each chemistry or

compound of interest. However, this is an extremely

prohibitive approach for screening, since these

calculations, even for just one compound, are extremely

difficult and time consuming, even after advances in

parallel computation. Hence, it is a somewhat recursive

process, where the researcher can apply predictive models

to generate further data, explore and mine that data, and

use this as a guide for where to incorporate ab initio

descriptors and repeat the information cycle process. This

can significantly accelerate the identification of promising

materials by cutting down the combinatorial explosion of

possible alloys, creating a form of active learning (Fig. 5). 

The future: needs and prospects 
The role of materials informatics can be pervasive throughout

all fields and applications in materials science. Its impact can

influence the way we do experiments, analyze data, and even

alter the way that we teach materials science. Ultimately, the

‘processing-structure-properties’ paradigm that forms the

core of materials development is based on understanding

multivariate correlations and interpreting them in terms of

the fundamental physics, chemistry, and engineering of

materials. The field of materials informatics can advance that

paradigm significantly. It may be helpful to bear in mind a

few critical questions in building the informatics

infrastructure for materials science57. 

• How can data mining/machine learning best be used to

discover what attributes (or combination of attributes) of

a material may govern specific properties? Using

information from different databases, we can compare and

search for associations and patterns that provide ways of

relating information among these different datasets. 

• What are the most interesting patterns that can be

extracted from existing material science data? Such a

pattern search process can potentially yield associations

between seemingly disparate datasets, as well as establish

possible correlations between parameters that are not

easily studied experimentally in a coupled manner.

• How can we use mined associations from large volumes of

data to guide future experiments and simulations? How

does one select from a materials library which compounds

are most likely to have the desired properties? Data-

mining methods should be incorporated into design and

testing methodologies to increase the efficiency of the

material application process. For example, a possible test

bed for materials discovery can involve the use of massive

databases on crystal structure, electronic structure, and

thermochemistry. Each of these databases alone can

provide information on hundreds of binary, ternary, and

multicomponent systems. Coupled to electronic structure

and thermochemical calculations, one can enlarge this

library to permit a wide array of simulations for thousands

of combinations of materials chemistries. Such a massively

parallel approach to the generation new ‘virtual’ data

would be daunting, if not impossible, were it not for data-

mining tools such as those proposed here. 

We conclude this introduction to materials informatics

with the question with which we began – what is materials

informatics? A most appropriate analogy to the complexity

of materials science is the field of astronomy, which offers a

vast ‘natural’ laboratory of data. As noted by Johns Hopkins’

REVIEW FEATURE
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Fig. 5 Structure-property map of ‘virtual’ compound semiconductors derived from a

combination of data-mining techniques. Results compare favorably with theoretical

studies from large-scale ab initio calculations. Data-mining results – based on a carefully

constructed database of latent variables influencing fundamental properties (in this case

bandgap) – provided these results in a very fast and robust manner. Validation of results

through independent computational means lends confidence to the use of data mining as

a predictive tool. 
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astronomer Alex Szalay, director of the US National Virtual

Observatory project, in describing informatics for

astronomy58: “Science was originally empirical, like Leonardo

making wonderful drawings of nature. Next came the

theorists who tried to write down equations that explained

observed behaviors, like Kepler or Einstein. Then, when we

got to complex enough systems like the clustering of a

million galaxies, there came the computer simulations – the

computational branch of science. Now, we are getting into

the data exploration part of science, which is kind of a little

bit of them all” – such is materials informatics. MT
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